翻訳と辞書
Words near each other
・ Horní Žukov
・ Hornówek, Kuyavian-Pomeranian Voivodeship
・ Hornówek, Masovian Voivodeship
・ Hornøya
・ Hornøya (Finnmark)
・ Hornøya (Svalbard)
・ Horný Badín
・ Horný Bar
・ Horný Hričov
・ Horný Kalník
・ Horný Lieskov
・ Horný Pial
・ Horný Tisovník
・ Horný Vadičov
・ Horný Vék
Horn–Schunck method
・ Horo
・ Horo (cloak)
・ Horo (woreda)
・ Horo Guduru Welega Zone
・ Horo language
・ Horo Records
・ Horoaba River
・ Horoatu Cehului River
・ Horoatu Crasnei
・ Horobetsu Station
・ Horocycle
・ Horod
・ Horodca
・ Horodecki


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Horn–Schunck method : ウィキペディア英語版
Horn–Schunck method
The Horn–Schunck method of estimating optical flow is a global method which introduces a global constraint of ''smoothness'' to solve the ''aperture problem'' (see Optical Flow for further description).
== Mathematical details ==
The Horn-Schunck algorithm assumes smoothness in the flow over the whole image. Thus, it tries to minimize distortions in flow and prefers solutions which show more smoothness.
The flow is formulated as a global energy functional which is then sought to be minimized. This function is given for two-dimensional image streams as:
: E=\iint \left(+ I_yv + I_t)^2 + \alpha^2(\lVert\nabla u\rVert^2+\lVert\nabla v\rVert^2)\right )xy}
where I_x, I_y and I_t are the derivatives of the image intensity values along the x, y and time dimensions respectively, \vec = ()^\top is the optical flow vector, and the parameter \alpha is a regularization constant. Larger values of \alpha lead to a smoother flow. This functional can be minimized by solving the associated multi-dimensional Euler-Lagrange equations. These are
: \frac - \frac\frac - \frac\frac = 0
: \frac - \frac\frac - \frac\frac = 0
where L is the integrand of the energy expression, giving
: I_x(I_xu+I_yv+I_t) - \alpha^2 \Delta u = 0
: I_y(I_xu+I_yv+I_t) - \alpha^2 \Delta v = 0
where subscripts again denote partial differentiation and \Delta = \frac + \frac denotes the Laplace operator. In practice the Laplacian is approximated numerically using finite differences, and may be written \Delta u(x,y) = \overline(x,y) - u(x,y) where \overline(x,y) is a weighted average of u calculated in a neighborhood around the pixel at location (x,y). Using this notation the above equation system may be written
:(I_x^2 + \alpha^2)u + I_xI_yv = \alpha^2\overline-I_xI_t
: I_xI_yu + (I_y^2 + \alpha^2)v = \alpha^2\overline-I_yI_t
which is linear in u and v and may be solved for each pixel in the image. However, since the solution depends on the neighboring values of the flow field, it must be repeated once the neighbors have been updated. The following iterative scheme is derived:
:u^=\overline^k - \frac^k+I_t)}
:v^=\overline^k - \frac^k+I_t)}
where the superscript ''k+1'' denotes the next iteration, which is to be calculated and ''k'' is the last calculated result. This is in essence the Jacobi method applied to the large, sparse system arising when solving for all pixels simultaneously.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Horn–Schunck method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.